Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.565
1.
Cells ; 13(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38727287

Currently, more and more people are suffering from chronic kidney disease (CKD). It is estimated that CKD affects over 10% of the population worldwide. This is a significant issue, as the kidneys largely contribute to maintaining homeostasis by, among other things, regulating blood pressure, the pH of blood, and the water-electrolyte balance and by eliminating unnecessary metabolic waste products from blood. What is more, this disease does not show any specific symptoms at the beginning. The development of CKD is predisposed by certain conditions, such as diabetes mellitus or hypertension. However, these disorders are not the only factors promoting the onset and progression of CKD. The primary purpose of this review is to examine renin-angiotensin-aldosterone system (RAAS) activity, transforming growth factor-ß1 (TGF-ß1), vascular calcification (VC), uremic toxins, and hypertension in the context of their impact on the occurrence and the course of CKD. We firmly believe that a deeper comprehension of the cellular and molecular mechanisms underlying CKD can lead to an enhanced understanding of the disease. In the future, this may result in the development of medications targeting specific mechanisms involved in the decline of kidney function. Our paper unveils the selected processes responsible for the deterioration of renal filtration abilities.


Disease Progression , Renal Insufficiency, Chronic , Renin-Angiotensin System , Humans , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renin-Angiotensin System/physiology , Animals , Hypertension/physiopathology , Hypertension/pathology , Vascular Calcification/metabolism , Vascular Calcification/pathology , Vascular Calcification/physiopathology , Transforming Growth Factor beta1/metabolism , Kidney/pathology , Kidney/metabolism , Kidney/physiopathology
2.
Kardiologiia ; 64(4): 72-78, 2024 Apr 30.
Article Ru | MEDLINE | ID: mdl-38742518

The aim of this review was to present the mechanism of infection with severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) and its possible effect on the course of arterial hypertension. Another aim was to evaluate the relationship of the renin-angiotensin-aldosterone system with the pathogenetic stages of infection caused by SARS-CoV-2 virus.


COVID-19 , Hypertension , Renin-Angiotensin System , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/epidemiology , Hypertension/epidemiology , Hypertension/physiopathology , Renin-Angiotensin System/physiology , Pandemics
3.
J Hypertens ; 42(6): 1101-1104, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38690908

Isolated nocturnal hypertension (INHT), defined as nighttime elevated blood pressure (BP) with normal daytime BP assessed by ambulatory BP monitoring, is associated with higher cardiovascular morbidity and mortality. We hypothesized that an alteration in the circulating renin-angiotensin system (RAS) contributes to INHT development. We examined circulating levels of angiotensin (Ang) (1-7) and Ang II and ACE2 activity in 26 patients that met the INHT criteria, out of 50 that were referred for BP evaluation (62% women, 45 ±â€Š16 years old). Those with INHT were older, had a higher BMI, lower circulating Ang-(1-7) (P = 0.002) and Ang II levels (P = 0.02) and no change in ACE2 activity compared to those normotensives. Nighttime DBP was significantly correlated with Ang-(1-7) and Ang II levels. Logistic regression showed significant association in Ang-(1-7) and Ang II levels with INHT. Our study reveals differences in circulating RAS in individuals with INHT.


Angiotensin II , Angiotensin I , Hypertension , Peptide Fragments , Humans , Angiotensin I/blood , Female , Male , Middle Aged , Peptide Fragments/blood , Hypertension/blood , Hypertension/physiopathology , Adult , Angiotensin II/blood , Renin-Angiotensin System/physiology , Circadian Rhythm , Blood Pressure , Angiotensin-Converting Enzyme 2/blood , Blood Pressure Monitoring, Ambulatory , Peptidyl-Dipeptidase A/blood
4.
Transl Neurodegener ; 13(1): 22, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622720

The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca2+ release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood-brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.


Parkinson Disease , Renin-Angiotensin System , Animals , Humans , Angiotensin Receptor Antagonists/pharmacology , Angiotensins/metabolism , Blood Pressure , Brain/metabolism , Dopamine , Parkinson Disease/pathology , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System/physiology
5.
Adv Kidney Dis Health ; 31(2): 87-99, 2024 Mar.
Article En | MEDLINE | ID: mdl-38649221

Hepatorenal syndrome type 1 (HRS-1) is a unique form of acute kidney injury that affects individuals with decompensated cirrhosis with ascites. The primary mechanism leading to reduction of kidney function in HRS-1 is hemodynamic in nature. Cumulative evidence points to a cascade of events that led to a profound reduction in kidney perfusion. A state of increased intrahepatic vascular resistance characteristic of advanced cirrhosis and portal hypertension is accompanied by maladaptive peripheral arterial vasodilation and reduction in systemic vascular resistance and mean arterial pressure. As a result of a fall in effective arterial blood volume, there is a compensatory activation of the sympathetic nervous system and the renin-angiotensin system, local renal vasoconstriction, loss of renal autoregulation, decrease in renal blood flow, and ultimately a fall in glomerular filtration rate. Systemic release of nitric oxide stimulated by the fibrotic liver, bacterial translocation, and inflammation constitute key components of the pathogenesis. While angiotensin II and noradrenaline remain the critical mediators of renal arterial and arteriolar vasoconstriction, other novel molecules have been recently implicated. Although the above-described mechanistic pathway remains the backbone of the pathogenesis of HRS-1, other noxious elements may be present in advanced cirrhosis and likely contribute to the renal impairment. Direct liver-kidney crosstalk via the hepatorenal sympathetic reflex can further reduce renal blood flow independently of the systemic derangements. Tense ascites may lead to intraabdominal hypertension and abdominal compartment syndrome. Cardio-hemodynamic processes have also been increasingly recognized. Porto-pulmonary hypertension, cirrhotic cardiomyopathy, and abdominal compartment syndrome may lead to renal congestion and complicate the course of HRS-1. In addition, a degree of ischemic or toxic (cholemic) tubular injury may overlap with the underlying circulatory dysfunction and further exacerbate the course of acute kidney injury. Improving our understanding of the pathogenesis of HRS-1 may lead to improvements in therapeutic options for this seriously ill population.


Hepatorenal Syndrome , Humans , Hepatorenal Syndrome/physiopathology , Hepatorenal Syndrome/therapy , Hepatorenal Syndrome/etiology , Liver Cirrhosis/physiopathology , Liver Cirrhosis/complications , Renal Circulation/physiology , Hemodynamics/physiology , Renin-Angiotensin System/physiology , Kidney/physiopathology , Hypertension, Portal/physiopathology , Ascites/physiopathology
6.
Arch Endocrinol Metab ; 68: e230292, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38652701

Diabetic retinopathy (DR) is a complication of diabetes with a complex pathophysiology and multiple factors involved. Recently, it has been found that the upregulation of the renin-angiotensin-aldosterone system (RAAS) leads to overexpression of angiotensin II (Ang II), which induces oxidative stress, inflammation, and angiogenesis in the retina. Therefore, RAAS may be a promising therapeutic target in DR. Notably, RAAS inhibitors are often used in the treatment of hypertension. Still, the potential role and mechanism of DR must be further studied. In this review, we discuss and summarize the pathology and potential therapeutic goals of RAAS in DR.


Diabetic Retinopathy , Renin-Angiotensin System , Humans , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/physiopathology , Renin-Angiotensin System/physiology , Renin-Angiotensin System/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin II/physiology , Animals
7.
Physiol Rep ; 12(9): e16025, 2024 May.
Article En | MEDLINE | ID: mdl-38684378

Obesity over-activates the classical arm of the renin-angiotensin system (RAS), impairing skeletal muscle remodeling. We aimed to compare the effect of exercise training and enalapril, an angiotensin-converting enzyme inhibitor, on RAS modulation in the skeletal muscle of obese animals. Thus, we divided C57BL/6 mice into two groups: standard chow (SC) and high-fat (HF) diet for 16 weeks. At the eighth week, the HF-fed animals were divided into four subgroups-sedentary (HF), treated with enalapril (HF-E), exercise training protocol (HF-T), and combined interventions (HF-ET). After 8 weeks of treatment, we evaluated body mass and index (BMI), body composition, exercise capacity, muscle morphology, and skeletal muscle molecular markers. All interventions resulted in lower BMI and attenuation of overactivation in the classical arm, while favoring the B2R in the bradykinin receptors profile. This was associated with reduced apoptosis markers in obese skeletal muscles. The HF-T group showed an increase in muscle mass and expression of biosynthesis markers and a reduction in expression of degradation markers and muscle fiber atrophy due to obesity. These findings suggest that the combination intervention did not have a synergistic effect against obesity-induced muscle remodeling. Additionally, the use of enalapril impaired muscle's physiological adaptations to exercise training.


Angiotensin-Converting Enzyme Inhibitors , Enalapril , Mice, Inbred C57BL , Muscle, Skeletal , Obesity , Physical Conditioning, Animal , Animals , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Obesity/metabolism , Obesity/physiopathology , Physical Conditioning, Animal/physiology , Mice , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Enalapril/pharmacology , Diet, High-Fat/adverse effects , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology
8.
Acta Physiol (Oxf) ; 240(5): e14134, 2024 May.
Article En | MEDLINE | ID: mdl-38488216

The renin-angiotensin system (RAS) plays a key role in blood pressure regulation. The RAS is a complex interconnected system composed of two axes with opposite effects. The pressor arm, represented by angiotensin (Ang) II and the AT1 receptor (AT1R), mediates the vasoconstrictor, proliferative, hypertensive, oxidative, and pro-inflammatory effects of the RAS, while the depressor/protective arm, represented by Ang-(1-7), its Mas receptor (MasR) and the AT2 receptor (AT2R), opposes the actions elicited by the pressor arm. The AT1R, AT2R, and MasR belong to the G-protein-coupled receptor (GPCR) family. GPCRs operate not only as monomers, but they can also function in dimeric (homo and hetero) or higher-order oligomeric states. Due to the interaction with other receptors, GPCR properties may change: receptor affinity, trafficking, signaling, and its biological function may be altered. Thus, heteromerization provides a newly recognized means of modulation of receptor function, as well as crosstalk between GPCRs. This review is focused on angiotensin receptors, and how their properties are influenced by crosstalk with other receptors, adding more complexity to an already complex system and potentially opening up new therapeutic approaches.


Receptors, G-Protein-Coupled , Renin-Angiotensin System , Humans , Renin-Angiotensin System/physiology , Animals , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Receptor Cross-Talk/physiology , Receptors, Angiotensin/metabolism , Receptor, Angiotensin, Type 1/metabolism , Blood Pressure/physiology , Receptor, Angiotensin, Type 2/metabolism
9.
Biochem Biophys Res Commun ; 707: 149617, 2024 May 07.
Article En | MEDLINE | ID: mdl-38520942

Preeclampsia (PE) is characterized by hypertension, proteinuria, and fetal growth restriction during pregnancy, suggesting that the preeclamptic intrauterine environment may affect the growth and health of the offspring. This study aimed to how maternal hypertension affects male offspring growth, focusing on lipid metabolism and blood pressure in mice. Female mice were infused with angiotensin II (Ang II) on gestational day 12. Dysregulation and accumulation of lipid were observed in the placenta of Ang II-induced maternal hypertensive dams, associating with fetal growth restriction. Ang II-offspring showed lower birth weight than in the control-offspring. Isolated and differentiated adipocyte from neonatal mice of Ang II-dams showed higher Pparγ mRNA expression compared with the control group. Lower body weight tendency had continued in Ang II-offspring during long period, body weight of Ang II-offspring caught up the control-offspring at 16 weeks of age. The adipose tissue of Ang II-offspring in adult also showed higher Pparγ mRNA expression with the accumulation of neutrophils and inflammatory monocytes than in those control. In addition, Ang II-offspring had higher basal blood pressure and higher sensitivity to hypertensive stimuli than in the control-offspring. Taken together, maternal hypertension induced by Ang II changes placental function, causing a lower birth weight. These changes in the intrauterine environment may affect adipocyte function and blood pressure of offspring after growth.


Hypertension , Pre-Eclampsia , Humans , Female , Pregnancy , Male , Animals , Mice , Blood Pressure/physiology , Fetal Growth Retardation/etiology , Birth Weight , PPAR gamma/genetics , PPAR gamma/metabolism , Placenta/metabolism , Renin-Angiotensin System/physiology , Hypertension/metabolism , Angiotensin II/metabolism , Pre-Eclampsia/metabolism , Adipose Tissue/metabolism , RNA, Messenger/metabolism
10.
Front Endocrinol (Lausanne) ; 15: 1368481, 2024.
Article En | MEDLINE | ID: mdl-38455648

Diabetic nephropathy (DN) represents a significant microvascular complication in diabetes, entailing intricate molecular pathways and mechanisms associated with cardiorenal vascular diseases. Prolonged hyperglycemia induces renal endothelial dysfunction and damage via metabolic abnormalities, inflammation, and oxidative stress, thereby compromising hemodynamics. Concurrently, fibrotic and sclerotic alterations exacerbate glomerular and tubular injuries. At a macro level, reciprocal communication between the renal microvasculature and systemic circulation establishes a pernicious cycle propelling disease progression. The current management approach emphasizes rigorous control of glycemic levels and blood pressure, with renin-angiotensin system blockade conferring renoprotection. Novel antidiabetic agents exhibit renoprotective effects, potentially mediated through endothelial modulation. Nonetheless, emerging therapies present novel avenues for enhancing patient outcomes and alleviating the disease burden. A precision-based approach, coupled with a comprehensive strategy addressing global vascular risk, will be pivotal in mitigating the cardiorenal burden associated with diabetes.


Diabetes Mellitus , Diabetic Nephropathies , Hyperglycemia , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Renin-Angiotensin System/physiology , Hypoglycemic Agents/therapeutic use , Hyperglycemia/complications , Blood Pressure , Diabetes Mellitus/drug therapy
11.
Peptides ; 176: 171201, 2024 Jun.
Article En | MEDLINE | ID: mdl-38555976

Sepsis and septic shock are global healthcare problems associated with mortality rates of up to 40% despite optimal standard-of-care therapy and constitute the primary cause of death in intensive care units worldwide. Circulating biomarkers of septic shock severity may represent a clinically relevant approach to individualize those patients at risk for worse outcomes early in the course of the disease, which may facilitate early and more precise interventions to improve the clinical course. However, currently used septic shock biomarkers, including lactate, may be non-specific and have variable impact on prognosis and/or disease management. Activation of the renin-angiotensin-aldosterone system (RAAS) is likely an early event in septic shock, and studies suggest that an elevated level of renin, the early and committed step in the RAAS cascade, is a better predictor of worse outcomes in septic shock, including mortality, than the current standard-of-care measure of lactate. Despite a robust increase in renin, other elements of the RAAS, including endogenous levels of Ang II, may fail to sufficiently increase to maintain blood pressure, tissue perfusion, and protective immune responses in septic shock patients. We review the current clinical literature regarding the dysfunction of the RAAS in septic shock and potential therapeutic approaches to improve clinical outcomes.


Renin-Angiotensin System , Shock, Septic , Humans , Renin-Angiotensin System/physiology , Shock, Septic/blood , Shock, Septic/mortality , Shock, Septic/metabolism , Biomarkers/blood , Renin/blood , Angiotensin II/blood , Angiotensin II/metabolism
12.
Heart Fail Rev ; 29(3): 729-737, 2024 May.
Article En | MEDLINE | ID: mdl-38381277

Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein's conversion of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone system (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibition can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.


Heart Failure , Kallikrein-Kinin System , Kallikreins , Kinins , Renin-Angiotensin System , Humans , Heart Failure/physiopathology , Heart Failure/drug therapy , Heart Failure/metabolism , Kallikrein-Kinin System/physiology , Kinins/metabolism , Kallikreins/metabolism , Renin-Angiotensin System/physiology , Renin-Angiotensin System/drug effects , Signal Transduction , Bradykinin/metabolism
13.
Hypertension ; 81(5): 964-976, 2024 May.
Article En | MEDLINE | ID: mdl-38362781

The renin-angiotensin system is the most important peptide hormone system in the regulation of cardiovascular homeostasis. Its classical arm consists of the enzymes, renin, and angiotensin-converting enzyme, generating angiotensin II from angiotensinogen, which activates its AT1 receptor, thereby increasing blood pressure, retaining salt and water, and inducing cardiovascular hypertrophy and fibrosis. However, angiotensin II can also activate a second receptor, the AT2 receptor. Moreover, the removal of the C-terminal phenylalanine from angiotensin II by ACE2 (angiotensin-converting enzyme 2) yields angiotensin-(1-7), and this peptide interacts with its receptor Mas. When the aminoterminal Asp of angiotensin-(1-7) is decarboxylated, alamandine is generated, which activates the Mas-related G-protein-coupled receptor D, MrgD (Mas-related G-protein-coupled receptor type D). Since Mas, MrgD, and the AT2 receptor have opposing effects to the classical AT1 receptor, they and the enzymes and peptides activating them are called the alternative or protective arm of the renin-angiotensin system. This review will cover the historical aspects and the current standing of this recent addition to the biology of the renin-angiotensin system.


Angiotensin II , Renin-Angiotensin System , Angiotensin I/metabolism , Peptide Fragments/metabolism , Peptides , Peptidyl-Dipeptidase A/metabolism , Receptors, G-Protein-Coupled/metabolism , Renin , Renin-Angiotensin System/physiology , Humans
14.
Hypertension ; 81(5): 977-990, 2024 May.
Article En | MEDLINE | ID: mdl-38372140

To celebrate 100 years of American Heart Association-supported cardiovascular disease research, this review article highlights milestone papers that have significantly contributed to the current understanding of the signaling mechanisms driving hypertension and associated cardiovascular disorders. This article also includes a few of the future research directions arising from these critical findings. To accomplish this important mission, 4 principal investigators gathered their efforts to cover distinct yet intricately related areas of signaling mechanisms pertaining to the pathogenesis of hypertension. The renin-angiotensin system, canonical and novel contractile and vasodilatory pathways in the resistance vasculature, vascular smooth muscle regulation by membrane channels, and noncanonical regulation of blood pressure and vascular function will be described and discussed as major subjects.


Cardiovascular System , Hypertension , Humans , Signal Transduction , Blood Pressure , Renin-Angiotensin System/physiology , Angiotensin II/metabolism
15.
J Vet Intern Med ; 38(2): 913-921, 2024.
Article En | MEDLINE | ID: mdl-38334012

BACKGROUND: Systemic hypertension (SH) is a common cardiovascular disease in older cats that is treated primarily with the calcium channel blocker amlodipine besylate (AML). The systemic effect of AML on the classical and alterative arms of the renin-angiotensin-aldosterone system (RAAS) in cats is incompletely characterized. HYPOTHESIS/OBJECTIVES: To determine the effect of AML compared to placebo on circulating RAAS biomarkers in healthy cats using RAAS fingerprinting. ANIMALS: Twenty healthy client-owned cats. METHODS: Cats were administered amlodipine besylate (0.625 mg in toto) or placebo by mouth once daily for 14 days in a crossover design with a 4-week washout period. Plasma AML concentrations and RAAS biomarker concentrations were measured at multiple timepoints after the final dose in each treatment period. Time-weighted averages for RAAS biomarkers over 24 hours after dosing were compared between treatment groups using Wilcoxon rank-sum testing. RESULTS: Compared to placebo, AML treatment was associated with increases in markers of plasma renin concentration (median 44% increase; interquartile range [IQR] 19%-86%; P = .009), angiotensin I (59% increase; IQR 27-101%; P = .006), angiotensin II (56% increase; IQR 5-70%; P = .023), angiotensin IV (42% increase; -19% to 89%; P = .013); and angiotensin 1-7 (38% increase; IQR 9-118%; P = .015). CONCLUSIONS AND CLINICAL IMPORTANCE: In healthy cats, administration of AML resulted in nonspecific activation of both classical and alternative RAAS pathways.


Amlodipine , Renin-Angiotensin System , Animals , Cats , Aldosterone , Amlodipine/pharmacology , Antihypertensive Agents/pharmacology , Biomarkers , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology
17.
Cardiorenal Med ; 14(1): 94-104, 2024.
Article En | MEDLINE | ID: mdl-38290488

INTRODUCTION: Heart failure (HF) progression according to changes in the serum chloride concentration ([sCl-]) was recently proposed as the "chloride (Cl) theory" for HF pathophysiology. The present study examined the association of neurohormones and renal Cl avidity to determine their contribution to acute HF and their involvement to the "Cl theory." METHODS: Data from 29 patients with acute HF (48% men; 80.3 ± 12 years) were analyzed. Blood and urine samples were obtained before decongestive therapy. Clinical tests included peripheral blood, serum and spot urinary electrolytes, b-type natriuretic peptide (BNP), and plasma neurohormones. RESULTS: In the 29 patients, urinary Cl concentrations ([uCl-]) inversely correlated with log (plasma renin activity [PRA]) (r = -0.64, p = 0.0002) and log (plasma aldosterone concentration) (r = -0.50, p = 0.006). The [sCl-]‒[uCl-] difference positively correlated with log PRA (r = 0.63, p = 0.0002) and log (plasma aldosterone concentration) (r = 0.49, p = 0.008). Patients were divided into 2 groups according to the [sCl-]‒[uCl-] difference, an excretion (low renal Cl avidity) group and an absorption (high renal Cl avidity) group. Compared with the excretion group (-77 to ‒5 mEq/L; n = 14), the absorption group (1-84 mEq/L; n = 15) exhibited greater renal impairment (serum creatinine; 1.45 ± 0.63 vs. 1.00 ± 0.38 mg/d, p = 0.029) and cardiac burden (log BNP; 2.99 ± 0.3 vs. 2.66 ± 0.32 pg/mL, p = 0.008), higher log PRA (0.20 ± 0.58 vs. -0.25 ± 0.35 ng/mL/h, p = 0.018), and lower fractional urinary Cl excretion (1.34 ± 1.3 vs. 5.33 ± 4.1%, p < 0.001). CONCLUSION: Renal Cl avidity differs in acute HF, i.e., excretion (low renal Cl avidity) versus absorption (high renal Cl avidity) types, involving renin-aldosterone-angiotensin activity as the underlying mechanism, which provides the neurohormonal background for the "Cl theory." A version of this study was presented in part at the annual international scientific assembly (ACC.23) of the American College of Cardiology, March 4-6, 2023.


Aldosterone , Chlorides , Heart Failure , Kidney , Natriuretic Peptide, Brain , Renin , Humans , Heart Failure/physiopathology , Heart Failure/metabolism , Male , Female , Chlorides/metabolism , Chlorides/blood , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Renin/blood , Renin/metabolism , Aldosterone/blood , Aldosterone/metabolism , Aged , Aged, 80 and over , Kidney/physiopathology , Kidney/metabolism , Acute Disease , Neurotransmitter Agents/metabolism , Renin-Angiotensin System/physiology
18.
J Neurol Neurosurg Psychiatry ; 95(6): 581-589, 2024 May 14.
Article En | MEDLINE | ID: mdl-38290839

A growing body of evidence suggests that cardiometabolic risk factors play a significant role in Alzheimer's disease (AD). Diabetes, obesity and hypertension are highly prevalent and can accelerate neurodegeneration and perpetuate the burden of AD. Insulin resistance and enzymes including insulin degrading enzymes are implicated in AD where breakdown of insulin is prioritised over amyloid-ß. Leptin resistance and inflammation demonstrated by higher plasma and central nervous system levels of interleukin-6 (IL-6), IL-1ß and tumour necrosis factor-α, are mechanisms connecting obesity and diabetes with AD. Leptin has been shown to ameliorate AD pathology and enhance long-term potentiation and hippocampal-dependent cognitive function. The renin-aldosterone angiotensin system, involved in hypertension, has been associated with AD pathology and neurotoxic reactive oxygen species, where angiotensin binds to specific angiotensin-1 receptors in the hippocampus and cerebral cortex. This review aims to consolidate the evidence behind putative processes stimulated by obesity, diabetes and hypertension, which leads to increased AD risk. We focus on how novel knowledge can be applied clinically to facilitate recognition of efficacious treatment strategies for AD.


Alzheimer Disease , Hypertension , Obesity , Humans , Alzheimer Disease/metabolism , Obesity/complications , Obesity/metabolism , Cardiometabolic Risk Factors , Diabetes Mellitus/metabolism , Renin-Angiotensin System/physiology , Insulin Resistance/physiology
19.
Pflugers Arch ; 476(5): 705-713, 2024 May.
Article En | MEDLINE | ID: mdl-38233636

In this review, we will cover (i) the proteolytic cascade of the RAAS, (ii) its regulation by multiple feedback-controlled parameters, and (iii) the major effects of the RAAS. For the effects of the RAAS, we focus on the role of the RAAS in the regulation of volume homeostasis and vascular tone, as major determinants of arterial blood pressure.


Renin-Angiotensin System , Renin-Angiotensin System/physiology , Humans , Animals , Blood Pressure/physiology , Aldosterone/metabolism
20.
Balkan Med J ; 41(1): 7-22, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38173173

Coronavirus disease 2019 (COVID-19) is caused by the novel severe acute respiratory coronavirus-2 (SARS-CoV-2). Several explanations for the development of cardiovascular complications during and after acute COVID-19 infection have been hypothesized. The COVID-19 pandemic, caused by SARS-CoV-2, has emerged as one of the deadliest pandemics in modern history. The myocardial injury in COVID-19 patients has been associated with coronary spasm, microthrombi formation, plaque rupture, hypoxic injury, or cytokine storm, which have the same pathophysiology as the three clinical variants of Kounis syndrome. The angiotensin-converting enzyme 2 (ACE2), reninaldosterone system (RAAS), and kinin-kallikrein system are the main proposed mechanisms contributing to cardiovascular complications with the COVID-19 infection. ACE receptors can be found in the heart, blood vessels, endothelium, lungs, intestines, testes, neurons, and other human body parts. SARS-CoV-2 directly invades the endothelial cells with ACE2 receptors and constitutes the main pathway through which the virus enters the endothelial cells. This causes angiotensin II accumulation downregulation of the ACE2 receptors, resulting in prothrombotic effects, such as hemostatic imbalance via activation of the coagulation cascade, impaired fibrinolysis, thrombin generation, vasoconstriction, endothelial and platelet activation, and pro-inflammatory cytokine release. The KKS system typically causes vasodilation and regulates tissue repair, inflammation, cell proliferation, and platelet aggregation, but SARS-CoV-2 infection impairs such counterbalancing effects. This cascade results in cardiac arrhythmias, cardiac arrest, cardiomyopathy, cytokine storm, heart failure, ischemic myocardial injuries, microvascular disease, Kounis syndrome, prolonged COVID, myocardial fibrosis, myocarditis, new-onset hypertension, pericarditis, postural orthostatic tachycardia syndrome, pulmonary hypertension, stroke, Takotsubo syndrome, venous thromboembolism, and thrombocytopenia. In this narrative review, we describe and elucidate when, where, and how COVID-19 affects the human cardiovascular system in various parts of the human body that are vulnerable in every patient category, including children and athletes.


COVID-19 , Cardiovascular System , Kounis Syndrome , Child , Humans , COVID-19/complications , SARS-CoV-2/metabolism , Renin-Angiotensin System/physiology , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/metabolism , Cytokine Release Syndrome/etiology , Endothelial Cells/metabolism , Pandemics , Cardiovascular System/metabolism
...